
Knut Großmann Die Entwicklung spanender Werkzeugmaschinen

Teil 2

Vorwort

Teil 2 enthält die Kapitel 3 - 6 des Fachbuches. Wie bereits in der Einführung zu Teil 1

erwähnt, sind diese Kapitel vom Autor nicht vollständig fertiggestellet worden. Es sind

Passagen vorhanden, in denen führender Text zu Bildern hilfreich wäre. Allerdings sind viele

Bilder von solcher Aussagekraft, dass auch ohne erklärendenText ein Verständnis möglich

ist.

Von großem Nutzen für die Ausbildung sind die Beispiele und Aufgaben, die in den

Kapiteln 5 und 6 mit den Lösungen enthalten sind. Sie geben einen Einblick in die

Dimensionierung wesentlicher Baugruppen der Werkzeugmaschine.

Berlin, Februar 2017

Dr. Konrad Voge

Titelblatt

Entwicklung II

Plotter 1987

Knut Großmann

2

Vorwort

3.	Ве	arbeitu	ngsaufgabe	6
	3.1.	Proze	ss und Werkzeug	6
	3.2.	Werks	stück	6
3.3.		Arbeit	sraum	6
	3.4.	Analy	se und Bewertung	7
4.	An	forderu	ngen an die Hauptbaugruppen -Zusammenstellung der Abhängigkeiten	9
	4.1.	Produ	ktivität und Genauigkeit	. 10
	4.2.	Konse	equenzen für die Hauptkomponenten spanender Werkzeugmaschinen	. 14
5.	На	uptantr	ieb und Hauptspindel	. 19
	5.1.	Anfor	derungen	. 19
	5.2.	Baugi	uppen und Auslegung	. 20
	5.2	2.1. E	lektromotor	. 20
	5.2	2.2.	Setriebe	. 23
	5.2	2.3. ⊢	lauptspindel	. 30
	5.2	2.4. L	agerung	. 38
	5.3.	Analy	se und Bewertung	. 51
	5.3	3.1. B	eispiel: Aktiv magnetisch gelagerte Hauptspindel	. 51
	5.3	3.2. B	eispiele für Prüfungsaufgaben	. 62
	;	5.3.2.1.	Merkmale von Hauptspindeln	. 62
	;	5.3.2.2.	Anpassung der Arbeitspunkte des Hauptantriebs an den Drehprozess	. 64
	;	5.3.2.3.	Hauptantrieb einer Großdrehmaschine	. 68
	;	5.3.2.4.	Hauptantrieb einer Drehmaschine	. 70
	;	5.3.2.5.	Hauptantrieb einer Fräsmaschine	. 71
	;	5.3.2.6.	Hauptantrieb einer CNC-Fräsmaschine	. 75
	;	5.3.2.7.	Radiale Steifigkeit einer Hauptspindel	. 76
	!	5.3.2.8.	Optimaler Lagerabstand	. 79
	;	5.3.2.9.	Steifigkeit an Spindelstock und Hauptspindel einer Fräsmaschine	. 81
į		5.3.2.10	D. Eigenfrequenzen an einer Hauptspindel	. 83

6.	Vo	rschu	ıban	triebe und Bewegungssysteme	87
6	6.1.	Anfo	orde	rungen	88
6	6.2.	Bau	grup	ppen und Auslegung	88
	6.2	.1.	Reg	gelung	89
	6.2	6.2.2.		sssystem	94
	6.2.3.		Antı	rieb	96
	6.2	.4.	Med	chanik	99
	(5.2.4.	1.	Kugelgewindetrieb	100
	(5.2.4.	2.	Ritzel-Zahnstange	112
	6	5.2.4.	3.	Ausführungsvarianten im Vergleich	115
	6.2	.5.	Füh	ırung	122
	6	5.2.5.	1.	Gleitführungen	122
	6	5.2.5.	2.	Wälzführungen	126
	6	5.2.5.	3.	Vergleich von Gleit- und Wälzführungen	141
	6.2	.6.	Abo	leckung	144
6	3.3.	Ana	lyse	und Bewertung	146
	6.3	.1.	Beis	spiel: Vorschubachse mit KGT in Einzelachse – Achsverbund – Masc	hine
	6.3	.2.	Beis	spiel: Vorschubachse mit Lineardirektantrieb und Impulskompensation	152
	6	5.3.2.	1.	Modellfindung	152
	6	5.3.2.	2.	Modellqualität	162
	6.3	.3.	Beis	spiele für Prüfungsaufgaben	165
	6	5.3.3.	1.	Vorschubantrieb einer Fräsmaschine	165
	6	5.3.3.	2.	Wegmessung an Vorschubachsen	167
	6	5.3.3.	3.	Regelung von Vorschubachsen	168
	6	5.3.3.	4.	Schlittenantrieb einer CNC-Drehmaschine	169
	6	5.3.3.	5.	Genauigkeit der Schlitten-Positionierung	173
	6	5.3.3.	6.	Dynamische Belastung der Schlittenführung	175
	6	5.3.3.	7.	Schlittenführung eines Bearbeitungszentrums	177

	6.3.3.8.	Nominelle Lebensdauer einer Profilschienenführung	. 179	
	6.3.3.9.	Führung an einer Vertikal-Fräsmaschine	. 181	
	6.3.3.10.	Hydrostatische Führung	. 183	
7.	Abürzungen		. 185	
8.	Herstellerverzeichnis			
9.	Literaturverzeichnis			

7. Abürzungen

EHD Elastohydrodynamischer Wälzkontakt

FFT Schnelle Fourier Transformation

IIR Butterworth-Filter

KGT Kugelgewindetrieb

KPSF Kugel-Profilschienenführung

PSF Profilschienenführung

PT1-Glied Übertragungsglied in der Regelungstechnik

RPSF Rollen- Profilschienenführung

TCP Tool Center Point

WZM Werkzeugmaschine

8. Herstellerverzeichnis

Axomat GmbH

Siedlung 25

01819 Bad Gottleuba-Berggießhübel

FAG Schaeffler Technologies GmbH&CO.KG

Georg-Schäfer-Str 30

97421 Schweinfurt

HAIDENHAIN

Dr. Johannes Haidenhain GmbH

Dr. Johannes Haidenhain-Str. 5

83301 Traunrent

IABG

Einsteinstr. 20

85521 Ottobrunn

INA

Schaeffler Technologies GmbH&CO.KG

Industriestrstr. 1-3

91074 Herzogenaurach

SKF Svenska Kugellagerfabriken

SKF Economos Deutschland GmbH

Robert-Bosch-Str. 11

74321 Bietigheim-Bissingen

9. Literaturverzeichnis

- [1] "Wikipedia," 24 Oktober 2016. [Online]. Available: https://de.wikipedia.org/wiki/Produktivität. [Zugriff am 19 Dezember 2016].
- [2] M. Weck und K. Teipel, Dynamisches Verhalten spanender Werkzeugmaschinen, Berlin Heidelberg New York: Springer, 1977.
- [3] F. S. Gruppe, Schmierung von Wälzlagern, Firmenschrift.
- [4] F. S. Gruppe, *Hochgenauigkeitslager*, Firmenschrift.
- [5] H. Rudolph, Ein Beitrag zur Analyse der nichtlinearen Systemdynamik in der Entwurfsphase von Werkzeugmaschinen, TU Dresden, 2012.
- [6] O. Kienzle, "Spezifische Schnittkräfte bei der Metallbearbeitung," Werkstofftechnik und Maschinenbau Band 47, pp. 224-225, 1957.
- [7] R. v. d. W. N. O. J. H. Faasen, "Prediction of regenerative Chatter by Modelling and Analysis of High-Speed Milling," *International Journal of Machine Tools & Manufacture*, 43, pp. 1437-1446, 2003.
- [8] H. Arndt, "Auslegung und Bewertung von Vorschubantrieben mit Spindel-Mutter-Systemen," Dissertation, Tu Dresden, Schriftenreihe des Lehrstuhls für Werkzeugmaschinen, 2000.
- [9] L. Neidhardt, "Wälzkontaktbezogene Lebensdauer von Profilschienenführungen -Bewertung der experimentellen Ermittlung des Lebensdauerkennwertes," Dissertation TU Dresden, Schriftenreihe des Lehrstuhls für Werkzeugmaschinen, 2013.
- [10] M. Weck, "Vergleich von Werkzeugmaschinen," 2003.
- [11] M. Weck, Werkzeugmaschinen und Fertigungssysteme 2 -Konstruktion und Berechnung, Berlin Heidelberg New York: Springer, 1997.
- [12] J. Müller, "Vergleichende Untersuchung von Methoden zur Verringerung der Gestellanregung durch lineargetriebene Werkzeugmaschinenachsen," Dissertation TU Dresden, Schriftenreihe des Lehrstuhls für Werkzeugmaschinen, 2009.